Một số phương pháp giải phương trình vô tỉ trong khuôn khổ chương trình bậc THCS
Toán học là một trong những môn khoa học cơ bản mang tính trừu tượng, nhưng mô hình ứng dụng của nó rất rộng rãi và gần gũi trong mọi lĩnh vực của đời sống xã hội, trong khoa học lí thuyết và khoa học ứng dụng. Toán học là một môn học giữ một vai trò quan trọng trong suốt bậc học phổ thông. Tuy nhiên, nó là một môn học khó, khô khan và đòi hỏi ở mỗi học sinh phải có một sự nỗ lực rất lớn để chiếm lĩnh những tri thức cho mình. Chính vì vậy, đối với mỗi giáo viên dạy toán việc tìm hiểu cấu trúc của chương trình, nội dung của sách giáo khoa, nắm vững phương pháp dạy học. Để từ đó tìm ra những biện pháp dạy học có hiệu quả trong việc truyền thụ các kiến thức Toán học cho học sinh là công việc cần phải làm thường xuyên.
Dạy học sinh học Toán không chỉ là cung cấp những kiến thức cơ bản, dạy học sinh giải bài tập sách giáo khoa, sách tham khảo mà điều quan trọng là hình thành cho học sinh phương pháp chung để giải các dạng toán, từ đó giúp các em tích cực hoạt động, độc lập sáng tạo để dần hoàn thiện kĩ năng, kĩ xảo, hoàn thiện nhân cách
Giải toán là một trong những vấn đề trung tâm của phương pháp giảng dạy, bởi lẽ việc giải toán là một việc mà người học lẫn người dạy thường xuyên phải làm, đặc biệt là đối với những học sinh bậc THCS thì việc giải toán là hình thức chủ yếu của việc học toán
Trong chương trình Toán bậc THCS, chuyên đề về phương trình là một trong những chuyên đề xuyên suốt 4 năm học của học sinh, bắt đầu từ những bài toán “Tìm x biết .” dành cho học sinh lớp 6, 7 đến việc cụ thể hóa vấn đề về phương trình ở cuối năm học lớp 8 và hoàn thiện cơ bản các nội dung về phương trình đại số ở lớp 9. Đây là một nội dung quan trọng bắt buộc học sinh bậc THCS phải nắm bắt được và có kĩ năng giải phương trình một cách thành thạo
Trong những vấn đề về phương trình, phương trình vô tỉ lại là một trở ngại không nhỏ khiến cho nhiều học sinh không ít ngỡ ngàng và bối rối khi giải các loại phương trình này. Thực ra, đây cũng là một trong những vấn đề khó. Đặc biệt, với những học sinh tham gia các kì thi học sinh giỏi thì đây là một trong những vấn đề quan trọng mà bắt buộc những học sinh này phải vượt qua
PHẦN I MỞ ĐẦU I. Lí do chọn đề tài Toán học là một trong những môn khoa học cơ bản mang tính trừu tượng, nhưng mô hình ứng dụng của nó rất rộng rãi và gần gũi trong mọi lĩnh vực của đời sống xã hội, trong khoa học lí thuyết và khoa học ứng dụng. Toán học là một môn học giữ một vai trò quan trọng trong suốt bậc học phổ thông. Tuy nhiên, nó là một môn học khó, khô khan và đòi hỏi ở mỗi học sinh phải có một sự nỗ lực rất lớn để chiếm lĩnh những tri thức cho mình. Chính vì vậy, đối với mỗi giáo viên dạy toán việc tìm hiểu cấu trúc của chương trình, nội dung của sách giáo khoa, nắm vững phương pháp dạy học. Để từ đó tìm ra những biện pháp dạy học có hiệu quả trong việc truyền thụ các kiến thức Toán học cho học sinh là công việc cần phải làm thường xuyên. Dạy học sinh học Toán không chỉ là cung cấp những kiến thức cơ bản, dạy học sinh giải bài tập sách giáo khoa, sách tham khảo mà điều quan trọng là hình thành cho học sinh phương pháp chung để giải các dạng toán, từ đó giúp các em tích cực hoạt động, độc lập sáng tạo để dần hoàn thiện kĩ năng, kĩ xảo, hoàn thiện nhân cách Giải toán là một trong những vấn đề trung tâm của phương pháp giảng dạy, bởi lẽ việc giải toán là một việc mà người học lẫn người dạy thường xuyên phải làm, đặc biệt là đối với những học sinh bậc THCS thì việc giải toán là hình thức chủ yếu của việc học toán Trong chương trình Toán bậc THCS, chuyên đề về phương trình là một trong những chuyên đề xuyên suốt 4 năm học của học sinh, bắt đầu từ những bài toán “Tìm x biết ...” dành cho học sinh lớp 6, 7 đến việc cụ thể hóa vấn đề về phương trình ở cuối năm học lớp 8 và hoàn thiện cơ bản các nội dung về phương trình đại số ở lớp 9. Đây là một nội dung quan trọng bắt buộc học sinh bậc THCS phải nắm bắt được và có kĩ năng giải phương trình một cách thành thạo Trong những vấn đề về phương trình, phương trình vô tỉ lại là một trở ngại không nhỏ khiến cho nhiều học sinh không ít ngỡ ngàng và bối rối khi giải các loại phương trình này. Thực ra, đây cũng là một trong những vấn đề khó. Đặc biệt, với những học sinh tham gia các kì thi học sinh giỏi thì đây là một trong những vấn đề quan trọng mà bắt buộc những học sinh này phải vượt qua Là một giáo viên giảng dạy Toán bậc THCS, bản thân tôi lại được Nhà trường trực tiếp giao trách nhiệm bồi dưỡng đội tuyển học sinh giỏi Toán tham dự kì thi các cấp Huyện và Tỉnh, tôi cũng rất trăn trở về vấn đề này. Vấn đề đặt ra là làm thế nào có thể giúp cho học sinh giải thành thạo các loại phương trình vô tỉ? Và khi gặp bất cứ một dạng toán nào về phương trình vô tỉ các em cũng có thể tìm ra cách giải một cách tốt nhất? Với tất cả những lí do nêu trên. Tôi quyết định chọn đề tài “Một số phương pháp giải phương trình vô tỉ” trong khuôn khổ chương trình bậc THCS II. Mục đích của đề tài Trên cơ sở những kinh nghiệm giảng dạy và thực tiễn học tập của học sinh, tìm ra những phương pháp giải phương trình vô tỉ một cách hiệu quả nhất III. Phạm vi nghiên cứu Để thực hiện đề tài này, tôi thực hiện nghiên cứu tại đơn vị công tác là Trường THCS Bu PRăng. Cụ thể là những học sinh tham gia đội tuyển học sinh giỏi Toán của trường và của Huyện IV. Cơ sở nghiên cứu Để thực hiện đề tài này, tôi dựa trên cơ sở các kiến thức mà tôi đã tự tìm tòi nghiên qua các tài liệu toán bậc THCS trên mạng, các tài liệu về phương pháp giảng dạy, các tài liệu bồi dưỡng thường xuyên, sách giáo khoa, sách bài tập, sách tham khảo của bộ môn Toán bậc trung học cơ sở V. Phương pháp nghiên cứu Thực hiện đề tài này, tôi sử dụng các phương pháp sau đây: – Phương pháp nâng lên lũy thừa – Phương pháp trị tuyệt đối hóa – Phương pháp sử dụng bất đẳng thức – Phương pháp đưa về phương trình tích – Phương pháp đặt ẩn phụ – Giải và biện luận phương trình vô tỉ VI. Thời gian nghiên cứu Đề tài được thực hiện trong năm học 2010 - 2011 VII. Giới hạn của đề tài Đề tài được sử dụng trong việc bồi dưỡng đội tuyển học sinh giỏi các cấp, với đối tượng là những học sinh giỏi bộ môn Toán bậc THCS PHẦN II NỘI DUNG ĐỀ TÀI I. Khảo sát tình hình thực tế Năm học 2010 - 2011, tôi được trường THCS Bu PRăng giao nhiệm vụ bồi dưỡng học sinh giỏi hai môn Toán và giải toán trên máy tính cầm tay. Đây là một cơ hội rất tốt để tôi thực hiện đề tài này, phương trình vô tỉ là một trong những dạng phương trình khó. Trong quá trình giải toán học sinh còn rất lúng túng, kể cả những học sinh tham gia trong hai đội tuyển thì những dạng phương trình vô tỉ cũng là một dạng toán mới. Trước khi bồi dưỡng học sinh giỏi, tôi đã thực hiện việc khảo sát môn toán trên 43 học sinh của lớp 9. Kết quả thu được như sau: Giỏi: 5 em Khá: 15 em Trung bình: 18 em Yếu: 5 em Đội tuyển học sinh giỏi môn Toán do tôi phụ trách đầu tháng 09 gồm 05 học sinh, qua quá trình bồi dưỡng, chọn lọc trực tiếp. Tôi đã chọn ra được 02 em đi tham dự kỳ thi học sinh giỏi cấp Huyện II. Một số phương pháp giải phương trình vô tỉ 1. Phương pháp nâng lên lũy thừa a) Dạng 1: Û Ví dụ. Giải phương trình: (1) Giải: (1) Û Vậy: phương trình đã cho có một nghiệm x = 3 b) Dạng 2: Ví dụ. Giải phương trình: (2) Giải. Với điều kiện x ≥ 2. Ta có: (2) Û Û Û Û Vậy: phương trình đã cho có một nghiệm x = 6 c) Dạng 3: Ví dụ. Giải phương trình: (3) Giải: Với điều kiện 7 ≤ x ≤ 12. Ta có: (3) Û Û Û Û 4(19x – x2 – 84) = x2 – 8x + 16 Û 76x – 4x2 – 336 – x2 + 8x – 16 = 0 Û 5x2 – 84x + 352 = 0 Û x1 = ; x2 = 8 Vậy: phương trình đã cho có hai nghiệm x1 = ; x2 = 8 d) Dạng 4: Ví dụ. Giải phương trình: (4) Giải: Với điều kiện x ≥ 4. Ta có: (4) Û Û Û Û Û 45 + 14x + 14 = 0 Với x ≥ 4 Þ vế trái của phương trình luôn là một số dương Þ phương trình vô nghiệm 2) Phương pháp trị tuyệt đối hóa Ví dụ 1. Giải phương trình: (1) Giải: (1) Û Với điều kiện x ≤ 8. Ta có: (1) Û |x – 2| = 8 – x – Nếu x < 2: (1) Þ 2 – x = 8 – x (vô nghiệm) – Nếu 2 ≤ x ≤ 8: (1) Þ x – 2 = 8 – x Û x = 5 HD: Đáp số: x = 5. Ví dụ 2. Giải phương trình (2) Giải: (2) Û Û Đặt y = (y ≥ 0) Þ phương trình đã cho trở thành: – Nếu 0 ≤ y < 1: y + 1 + 3 – y = 2 – 2y Û y = –1 (loại) – Nếu 1 ≤ y ≤ 3: y + 1 + 3 – y = 2y – 2 Û y = 3 – Nếu y > 3: y + 1 + y – 3 = 2y – 2 (vô nghiệm) Với y = 3 Û x + 1 = 9 Û x = 8 Vậy: phương trình đã cho có một nghiệm là x = 8 3) Phương pháp sử dụng bất đẳng thức a) Chứng tỏ tập giá trị của hai vế là rời nhau, khi đó phương trình vô nghiệm Ví dụ 1. Giải phương trình Cách 1. điều kiện x ≥ 1 Với x ≥ 1 thì: Vế trái: Þ vế trái luôn âm Vế phải: ≥ 1 Þ vế phải luôn dương Vậy: phương trình đã cho vô nghiệm Cách 2. Với x ≥ 1, ta có: Û Û Vế trái luôn là một số âm với x ≥ 1, vế phải dương với x ≥ 1 Þ phương trình vô nghiệm b) Sử dụng tính đối nghịch ở hai vế Ví dụ 2. Giải phương trình: (1) Giải: Ta có (1) Û Û Ta có: Vế trái ≥ . Dấu “=” xảy ra Û x = –1 Vế phải ≤ 5. Dấu “=” xảy ra Û x = –1 Vậy: phương trình đã cho có một nghiệm x = –1 c) Sử dụng tính đơn điệu của hàm số (tìm một nghiệm, chứng minh nghiệm đó là duy nhất) Ví dụ 1. Giải phương trình: Giải: điều kiện x ≥ Dễ thấy x = 2 là một nghiệm của phương trình – Nếu : VT = . Mà: VP > – Nếu x > 2: VP = 2x2 + > 2.22 + = . VT < Vậy: phương trình đã cho có một nghiệm duy nhất là x = 2 Ví dụ 2. Giải phương trình: Giải: Thử với x = 2. Ta có: (1) Û Nếu x > 2: VT < VP Nếu x VP Vậy: x = 2 là nghiệm duy nhất của phương trình Ví dụ 3. Giải phương trình: Giải: ĐK: x < 2. Bằng cách thử, ta thấy x = là nghiệm của phương trình. Ta cần chứng minh đó là nghiệm duy nhất. Thật vậy: Với x < : và Þ . Tương tự với < x < 2: Ví dụ 4. Giải phương trình: (1) Giải: (1) Nếu 3x = –(2x + 1) Û x = thì các biểu thức trong căn ở hai vế bằng nhau. Vậy x = là một nghiệm của phương trình. Hơn nữa nghiệm của (1) nằm trong khoảng . Ta chứng minh đó là nghiệm duy nhất. Với : 3x < –2x – 1 < 0 Þ (3x)2 > (2x + 1)2 Þ Suy ra: Þ (1) không có nghiệm trong khoảng này. Chứng minh tương tự, ta cũng đi đến kết luận (1) không có nghiệm khi d) Sử dụng điều kiện xảy ra dấu “=” ở bất đẳng thức không chặt Ví dụ. Giải phương trình Giải: điều kiện Áp dụng bất đẳng thức với ab > 0 Với điều kiện . Nên: . Dấu “=” xảy ra Û Û 4. Phương pháp đưa về phương trình tích Ví dụ 1. Giải phương trình: Giải. ĐK: x ≥ 2. Để ý thấy: (2x + 1) – (x – 2) = x + 3. Do đó, nhân lượng liên hợp vào hai vế của phương trình: Û Þ PT vô nghiệm Ví dụ 2. Giải phương trình: (1) Giải. ĐK: | x | ≤ 1: (1) Û Û x1 = 0; x2 = Ví dụ 3. Giải phương trình: (1) Giải. Chú ý: x4 – 1 = (x – 1)(x3 + x2 + x + 1). (1) Û Û x = 2 5) Phương pháp đặt ẩn phụ a) Sử dụng một ẩn phụ Ví dụ 1. Giải phương trình: (1) Giải. Đặt = y (y ≥ 0) Þy2 = x + 1 Û x = y2 – 1 Û x2 = (y2 – 1)2 Þ (2) Û (y2 – 1)2 + y – 1 = 0 Û y(y - 1)(y2 + y - 1) = 0. Từ đó suy ra tập nghiệm của phương trình là: Ví dụ 2. Giải phương trình: (1) HD: ĐK: x ≥ 1. Đặt = y (1) Û Û y3 + y2 – 2 = 0 Û (y – 1)(y2 + 2y + 2) = 0 Û y = 1 Û x = 1 b) Sử dụng hai ẩn phụ Ví dụ 1. Giải phương trình: 2(x2 + 2) = 5 (3) Giải. Đặt u = , v = (ĐK: x ≥ -1, u ≥ 0, v ≥ 0). Khi đó: u2 = x + 1, v2 = x2 – x + 1, u2v2 = x3 + 1. Þ (3) Û 2(u2 + v2) = 5uv Û (2u - v)(u - 2v) = 0 Giải ra, xác định x. Kết quả là: x Î Ví dụ 2. Giải phương trình: (1) Giải. ĐK: x ≥ –2. (1) Û Đặt: = u, = v (u, v ≥ 0)Þ u2 – v2 = 3. (1) Û (a – b)(1 + ab) = a2 – b2 Û (a – b)(1 – a + ab – b) = 0 Û (a – b)(1 – a)(1 – b) = 0 Giải ra: x = –1 là nghiệm duy nhất Ví dụ 3. Giải phương trình: (1) Giải. ĐK: x ≥ 0. Đặt = u, = v (u, v ≥ 0): (1) Û b – a = a2 – b2 Û (a – b)(a + b + 1) = 0 Mà a + b + 1 > 0 Þ a = b Û x = là nghiệm duy nhất của phương trình. Ví dụ 4. Giải phương trình: (1) Giải. Đặt = u, = v (u, v ≥ 0) (1) Û Û u – (v2 – u2) – v = 0 Û (u – v)(1 + u + v) = 0. Vì 1 + u + b > 0 nên: u = v. Giải ra ta được: x = 2 c) Sử dụng ba ẩn phụ Ví dụ 1 Giải phương trình: (1) Giải. ĐK: x ≥ 2. (1) Û Đặt: = a, = b, = c (a, b, c ≥ 0): (1) Û ab + c = b + ac Û (a – 1)(b – c) = 0 Û a = 1 hoặc b = c. Thay ngược trở lại ta được x = 2 là nghiệm duy nhất của phương trình Ví dụ 2. Giải phương trình : Giải. Đặt : ; ; (u ; v ; t ≥ 0) Þ x = 2 − u2 = 3 − v2 = 5 − t2 = uv + vt + tu Từ đó ta có hệ: Nhân từng vế của (1), (2), (3) ta có : [ (u + v)(v + t)(t + u) ]2 = 30 Vì u ; v ; t ≥ 0 nên: (4) Kết hợp (4) với lần lượt (1) ; (2) ; (3) dẫn đến: Cộng từng vế của (5) ; (6) ; (7) ta có: (8) Kết hợp (8) với lần lượt (5) ; (6) ; (7) ta có: d) Sử dụng ẩn phụ đưa về hệ phương trình Ví dụ 1. Giải phương trình Cách 1: Giải tương tự bài 1. Ta được x = 5 Cách 2: Đặt và . Ta có hệ: Û Û x = 5. Ví dụ 2 Giải phương trình: Giải. ĐK: 0 ≤ x ≤ 25. Đặt = u , (u, v ≥ 0): ÞGiải ra ta có x = 1 là nghiệm duy nhất. Ví dụ 3. Giải phương trình: Giải. ĐK: –3 ≤ x ≤ 3: Đặt = u, = v (u, v ≥ 0) Þ Û . Thế ngược trở lại: x = 0 là nghiệm duy nhất. Ví dụ 4. Giải phương trình: Giải. ĐK: – 4 ≤ x ≤ 1. Đặt (u, v ≥ 0) Þ Þ Ví dụ 5. Giải phương trình: Giải. ĐK: –2 ≤ x ≤ 2: Đặt (u, v ≥ 0) Þ Giải ra ta được: (a, b) = {(0 ; 2), (2 ; 0)}. Từ đó thế ngược trở lại: x = ±2 Ví dụ 6. Giải phương trình: (1) Giải. Đặt = u, = v (u, v ≥ 0) Þ (1) Û Ví dụ 7. Giải phương trình: Giải. Đặt (1) Û Þ kết quả 6) Giải và biện luận phương trình vô tỉ Ví dụ 1. Giải và biện luận phương trình: Giải. Ta có: Û – Nếu m = 0: phương trình vô nghiệm – Nếu m ≠ 0: . Điều kiện để có nghiệm: x ≥ m Û ≥ m + Nếu m > 0: m2 + 4 ≥ 2m2 Û m2 ≤ 4 Û + Nếu m < 0: m2 + 4 ≤ 2m2 Û m2 ≥ 4 Û m ≤ –2 Tóm lại: – Nếu m ≤ –2 hoặc 0 < m ≤ 2: phương trình có một nghiệm – Nếu –2 2: phương trình vô nghiệm Ví dụ 2. Giải và biện luận phương trình với m là tham số: (Đề thi học sinh giỏi cấp tỉnh năm học 1999 – 2000) Giải. Ta có: – Nếu m = 0: phương trình vô nghiệm – Nếu m ≠ 0:. Điều kiện để có nghiệm: x ≥ m Û + Nếu m > 0: m2 + 3 ≥ 2m2 Û m2 ≤ 3 Û + Nếu m < 0: m2 + 3 ≤ 2m2 Û m2 ≥ 3 Û m ≤ Tóm lại: – Nếu hoặc . Phương trình có một nghiệm: – Nếu hoặc : phương trình vô nghiệm Ví dụ 3. Giải và biện luận theo tham số m phương trình: Giải. Điều kiện: x ≥ 0 – Nếu m < 0: phương trình vô nghiệm – Nếu m = 0: phương trình trở thành Þ có hai nghiệm: x1 = 0, x2 = 1 – Nếu m > 0: phương trình đã cho tương đương với + Nếu 0 < m ≤ 1: phương trình có hai nghiệm: x1 = m; x2 = + Nếu m > 1: phương trình có một nghiệm: x = m II. Kết quả thực hiện Qua việc bồi dưỡng học sinh giỏi hai môn: Toán và giải toán trên máy tính cầm tay. Tôi đã áp dụng các nội dung của đề tài vào việc bồi dưỡng cho các em. Kết quả đạt được như sau: a) Cấp Huyện: Tổng số học sinh tham dự kì thi học sinh cấp Huyện: 02 em Số học sinh đạt giải: 02 em ( 1 giải ba, 1 được công nhận học sinh giỏi) b) Cấp Tỉnh: Tổng số học sinh tham dự kì thi học sinh giỏi cấp Tỉnh: 02 em Số học sinh đạt giải : không có III. Bài học kinh nghiệm Qua việc thực hiện chuyên đề giải phương trình vô tỉ trong chương trình của cấp THCS và việc bồi dưỡng học sinh giỏi hai môn Toán và Giải toán trên máy tính cầm tay. Bản thân tôi đã rút ra được một số bài học kinh nghiệm như sau: 1. Về công tác chỉ đạo Đây là một công tác quan trọng hàng đầu trong việc bồi dưỡng học sinh giỏi. Trong năm học vừa qua, nhận được sự chỉ đạo sát sao, sự quan tâm thường xuyên từ phía Ban giám hiệu Nhà trường và Phòng giáo dục đào tạo. Công tác bồi dưỡng học sinh giỏi đã và đang gặt hái được những thành nhất định. Nhờ có sự quan tâm đó, mà Trường THCS Bu PRăng là một trường vùng sâu, vùng xa của tỉnh Đắk Nông đã có học sinh giỏi cấp Huyện trong các năm học 2009- 2010 và 2010 – 2011. 2. Về phía học sinh Để gặt hái được những thành tích đáng kể trong công tác giáo dục. Thì học sinh phải là nhân vật trung tâm trong việc bồi dưỡng đào tạo, đây là nhân tố giữ vai trò quyết định trong sự thành công hay thất bại của mỗi giáo viên làm công tác giảng dạy, bồi dưỡng. Vì chính các em mới là người học, là người đi thi và là người đem lại những thành tích đó. Chính vì vậy, sự động viên, quan tâm, giúp đỡ của lãnh đạo ngành, gia đình các em và những giáo viên tham gia làm công tác bồi dưỡng là rất lớn. Nhất là đối với lứa tuổi học sinh lớp 8, 9, đặc điểm tâm lí lứa tuổi của các em có tác động không nhỏ đến việc học tập. Nhận thức rõ điều đó, mỗi giáo viên làm công tác bồi dưỡng cần phải thường xuyên động viên, uốn nắn kịp thời để giúp cho các em có thể có một sự quyết tâm lớn trong công việc học tập của mình. 3. Về phía giáo viên tham gia trực tiếp công tác bồi dưỡng học sinh giỏi Nếu học sinh giữ vai trò trung tâm trong công tác bồi dưỡng học sinh giỏi thì vị trí của người thầy lại giữ vai trò chủ đạo. Để thực hiện thành công việc đào tạo bồi dưỡng học sinh giỏi đòi hỏi giáo viên cần phải có thời gian bồi dưỡng nhiều hơn, phải đầu tư thời gian, công sức, phải lên được kế hoạch giảng dạy một cách chi tiết, chuẩn mực. Cặp nhật thường xuyên những kiến thức mới mà các em vừa học để bồi dưỡng ngay, đặc biệt là phải kích thích được các em say sưa học tập, tự giác học tập, phát huy được những tố chất tốt nhất của các em để công việc học tập của các em đạt được hiệu quả cao PHẦN III KẾT LUẬN Để hoàn thành đề tài trên tôi đã đọc rất nhều tài liệu kết hợp với kinh nghiệm của bản thân, sự giúp đỡ của nhà trường, của đồng nghiệp tôi đã đưa ra được một số phương pháp giải phương trình vô tỉ trong khuôn khổ chương trình cấp THCS, mà cụ thể là những phương pháp giải phương trình vô tỉ của lớp 9. Trong quá trình thực hiện đề tài chắc chắn rằng tôi còn có một số thiểu sót nhất định và ngoài những phương pháp mà tôi chắt lọc được ở trên, chắc chắn còn nhiều phương pháp giải khác mà tôi chưa biết. Chính vì vậy, tôi rất mong có sự đóng góp, bổ xung của các đồng nghiệp để đề tài hoàn thiện hơn. Tôi xin chân thành cảm ơn ! Quảng trực, ngày 09 tháng 10 năm 2010 Người thực hiện Bạch Xuân Lương NHẬN XÉT, ĐÁNH GIÁ CỦA TỔ CHUYÊN MÔN VÀ BGH NHÀ TRƯỜNG Ngày . tháng .. năm 201 ( Kí tên, đóng dấu)
File đính kèm:
- Bach Xuan Luong _Toan.doc